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Abstract
The well-known theory of quantum transport is extended to an approach that
allows the description of quantum diffusion in strongly biased multi-band
semiconductors and semiconductor superlattices. The longitudinal diffusion
coefficient is identified and expressed by a quantity that satisfies a different
quantum-kinetic equation than the carrier distribution function, from which the
drift velocity is calculated. Results are obtained for a simple two-band model
at the interband (intersubband) tunnelling resonance. In contrast to the drift
velocity, the diffusion coefficient may exhibit a Zener antiresonance.

1. Introduction

Recently, there has been considerable theoretical and experimental progress in
studying electric-field-induced intersubband transitions in modulation-doped semiconductor
heterostructures. Following the early suggestion of Kazarinov and Suris [1], mid-infrared
emitters, in particular quantum cascade lasers, have been studied and routinely fabricated
(for a review, see, for example [2]). These devices exploit intersubband transitions between
conduction band states of biased heterostructures. Population inversion and gain are observed
due to a field-mediated carrier redistribution, in which intersubband tunnelling plays the
most important role. The extensive technological efforts have been accompanied by many
theoretical studies of field-induced intersubband effects and its influence on quantum transport.
Unfortunately, these studies have not been accomplished to the same extent for fluctuation
phenomena in nonequilibrium multi-band systems. Treatments of this kind would additionally
contribute to an understanding of the relationship between microscopic processes and their
macroscopic manifestation. It is well known that noise and diffusion of hot carriers are sensitive
to all microscopic details and provide complementary information about high-field properties
of heterostructures.

Except for complete numerical approaches, there is, to our knowledge, no systematic
treatment of diffusion phenomena in strongly biased semiconductors. We fill this gap by
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addressing the influence of field-induced intersubband transitions on the longitudinal diffusion
coefficient and the related noise properties. Considering this interesting problem, at first
glance a question arises: Is it really necessary to develop a completely new theory for the
field-dependent diffusion coefficient, or can we benefit from achievements made in ordinary
transport theory for the current density? Because of the famous Einstein relation, which is
valid at low electric-field strengths, it is tempting to assume that the mobility (drift velocity)
as well as the diffusion coefficient are always governed by the same statistical quantity,
namely the nonequilibrium carrier distribution function f (k, t). To our surprise, the validity
of such a conclusion has to be strongly questioned. Studies of the stationary transport in bulk
systems rely on the description of a uniform carrier distribution far away from the contacts.
This situation has to be compared with the definition of the diffusion coefficient in terms of
spreading, in which the evolution of ‘excess carriers’ is monitored. A description of spreading
requires the treatment of the occupation probability f (k, r, t), which depends not only on the
quasi-momentum k at a given time t , but also on the position r of the carrier or its related
wavevector κ [ f (k,κ, t)]. Strictly speaking, a rigorous kinetic theory of diffusion processes
in semiconductors starts by considering the spreading of an initial δ-like inhomogeneity of the
carrier density. The special choice of a δ-like inhomogeneity is not restrictive for the steady
state. Such an approach avoids the artificial and unphysical distinction between excess carriers
and carriers of a uniform background, as proposed in [3]. In our description of diffusion effects
under high-field conditions, it is not the distribution function f (k, t) itself, but the quantity
∇κ f (k,κ, t)|κ=0 that is of fundamental importance. This function satisfies a different kinetic
equation than the distribution function f (k, t), from which the drift velocity is obtained. We
shall arrive at the conclusion that for arbitrary electric-field strengths, the drift velocity and the
diffusion coefficient are not related to each other by the simple Einstein relation. Rather, it is
necessary to derive and solve a specific kinetic equation for a novel quantity, when studying
diffusion phenomena in strong electric fields. Recently, such an approach has been proposed
for one-band systems [4]. We shall extend this scheme to multi-band (multi-subband) models,
while focusing on interband (intersubband) tunnelling.

2. Basic theory

Most theoretical approaches perform numerical Monte Carlo simulations [3, 5–7] to determine
the frequency dispersion of the differential mobility, diffusivity, and noise as a function of an
applied electric field of arbitrary strength. In addition, the physical interpretation of numerical
data is provided by analytical formulae derived from complementary theoretical approaches
based on the Boltzmann equation [6]. We shall derive an alternative, rigorous quantum-
mechanical approach to study the field-dependent longitudinal diffusion coefficient of multi-
band systems, valid for a nondegenerate electron gas described within the one-particle picture.
Our starting point constitutes the ‘spreading method’, which allows a phenomenological
definition of the diffusion coefficient. Within this approach, Fick’s law is used to determine
the conditional probability Pνν′ (r − r0|t) to find an electron at a given time t at the lattice
site r in the ν ′th band, provided that it occupied the state r0, ν ′ at an earlier time t = 0. The
Laplace-transformed probability propagator satisfies the phenomenological conservation law

s Pνν′ (r − r0|s) = δνν′δ(r − r0) +
∑

µ

∂

∂z
Pνµ(r − r0|s)vµν′(s)

+
∑

µ

∂2

∂z2
Pνµ(r − r0|s)Dµν′(s) +

∑
µ

Pνµ(r − r0|s)ωµν′(s), (1)
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which is used to define macroscopic observables. The spatial changes of P are restricted to the
z axis, which is oriented parallel to the electric field E. The components of the drift velocity,
the diffusion coefficient, and the rates for carrier generation and recombination are denoted by
vνµ(s), Dνµ(s), and ωνµ(s), respectively. For simplicity, we consider an initial δ-like ‘excess
carrier’ distribution. This special choice does not put any restrictions on the steady state.

As seen from equation (1), the transport coefficients are expressed by the moments of
the conditional probability propagator. This quantity results from a Bethe–Salpeter equation,
which is closed when formulated for more general objects that depend on four band indices
Pν1ν3

ν2ν4
(with Pνν′ ≡ Pνν′

νν′ ) (see [8]). In Fourier space, the moments of the generalized probability
propagator are defined as

(n) Pν1ν3
ν2ν4

(s) =
∑
k,k′

(n) Pν1ν3
ν2ν4

(k, k′|s) =
∑
k,k′

∂n

∂κn
z

Pν1ν3
ν2ν4

(k, k′,κ|s)|κ=0. (2)

Let us continue by deriving the set of equations for the lowest-order moments by multiplying
equation (1) by (z − z0)

n and by an integration by parts. The result

s(0) Pνν′ (s) = δνν′ +
∑

µ

(0) Pνµ(s)ωµν′ (s), (3)

s(1) Pνν′ (s) = i
∑

µ

(0) Pνµ(s)vµν′(s) +
∑

µ

(1) Pνµ(s)ωµν′ (s), (4)

s(2) Pνν′ (s) =
∑

µ

(2) Pνµ(s)ωµν′ (s) + 2i
∑
µ

(1) Pνµ(s)vµν′ (s) − 2
∑

µ

(0) Pνµ(s)Dµν′ (s), (5)

provides the basis for our microscopic approach to calculate the transport coefficients.
According to [9], the conditional probability propagator P is expressed by the vacuum
expectation value

Pα1α3
α2α4

(s) = 1

Z

∫ ∞

0
dt e−st Spph{e−Hph/kB T 〈0|aα2 eiH t/h̄a†

α4
aα3e

−iH t/h̄ a†
α1

|0〉}, (6)

averaged over the vibrational subsystem described by the Hamiltonian Hph. For our general
approach, it is not necessary to specify the phonon contribution. Fermionic creation and
annihilation operators classified by quantum numbers αi are denoted by a†

αi
and aαi . The

partition function is given by Z = Tr exp(−Hph/kBT ). Please note that the total Hamiltonian
encompasses the free electronic and phononic part as well as the interaction term Hint and
the contribution of the electric field. By applying an equation-of-motion analysis, the kinetic
equation for the probability propagator P is derived in the similar way as was done in [4]. We
do not take into account the Coulomb interaction between the carriers, and focus, therefore,
on the one-electron picture. This is the main approximation in our approach. Within the
k-representation, we obtain the following kinetic equation (see [8]):∑
ν,ν′

[sδν3ν
′δνν4 + Î ν′ν3

νν4
(k′,κ)]Pν1ν

′
ν2ν

(k, k′, κ |s) = δk,k′δν1ν3δν2ν4

+
∑

k1

∑
µ,µ′

Pν1µ′
ν2µ

(k, k1,κ|s)Wµ′ν3
µν4

(k1, k′,κ|s), (7)

in which the field-dependent scattering probability W collects scattering-in and scattering-out
contributions for all intra- and interband transitions. Details of the band structure enter the
operator

Î ν′ν3
νν4

(k′,κ) =
{

i

h̄

[
εν3

(
k′ − κ

2

)
− εν4

(
k′ +

κ

2

)]
+

eE
h̄

· ∇k′

}
δν3ν

′δνν4

+
i

h̄
eE ·

[
Qνν4

(
k′ +

κ

2

)
δν′ν3 − Qν3ν′

(
k′ − κ

2

)
δνν4

]
, (8)
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in which εν(k) denotes the tight-binding dispersion relation of the νth subband and Qνν′ (k)

the dipole matrix elements. Within the k representation of the Hamiltonian, the electric field
E explicitly enters the kinetic equation (7). In this picture, the off-diagonal elements of the
propagator P become relevant, when tunnelling plays an important role.

From equation (7), the following sum rule is derived:

s
∑

k′

∑
ν′

Pν1ν
′

ν2ν
′ (k, k′,κ = 0|s) = δν1ν2 , (9)

which is a consequence of our one-electron approach (in which
∑

α a†
αaα = 1 is satisfied).

According to the set of equations (3)–(5), the transport coefficients are obtained from the
moments of the probability propagator P , which is calculated on the basis of a microscopic
theory. The kinetic equations for these quantities are easily derived from the definition in
equation (2) and from (7). By simple algebraic manipulations, we confirm that the formal
solutions of the equations for the lowest-order moments are given by

(1) Pν1ν3
ν2ν4

(k, k′ |s) =
∑

k1

∑
µ,µ′

{
−

∑
ν,ν′

(1) Î ν′µ′
νµ (k1)

(0) Pν1ν
′

ν2ν
(k, k1|s)

+
∑

k2

∑
ν′

1,ν
′
2

(0) P
ν1ν

′
1

ν2ν
′
2
(k, k2|s)(1)W

ν′
1µ′

ν′
2µ

(k2, k1|s)
}

(0) Pµ′ν3
µν4

(k1, k′|s), (10)

(2) Pν1ν3
ν2ν4

(k, k′|s) =
∑

k1

∑
µ,µ′

{
−2

∑
ν,ν′

(1) Î ν′µ′
νµ (k1)

(1) Pν1ν
′

ν2ν
(k, k1|s)

+ 2
∑

k2

∑
ν′

1,ν
′
2

(1) P
ν1ν

′
1

ν2ν
′
2
(k, k2|s)(1)W

ν′
1µ

′

ν′
2µ

(k2, k1|s)

+
∑

k2

∑
ν′

1,ν
′
2

(0) P
ν1ν

′
1

ν2ν
′
2
(k, k2|s)(2)W

ν′
1µ

′

ν′
2µ

(k2, k1|s)

−
∑
ν,ν′

(2) Î ν′µ′
νµ (k1)

(0) Pν1ν
′

ν2ν
(k, k1|s)

}
(0) Pµ′ν3

µν4
(k1, k′|s), (11)

in which the abbreviations
(n) Î ν′µ′

νµ (k) = ∂n

∂κn
z

Î ν′µ′
νµ (k,κ)|κ=0 (12)

are used. In a similar manner, the quantities (n)W are defined. Starting from these results,
expressions for the drift velocity and the diffusion coefficient are derived using the same
computational scheme.

2.1. Drift velocity

In this section, we shall show that, within the one-particle picture of a nondegenerate electron
gas, the exact transport theory proposed in [8] is reproduced by our approach. The biased
electron ensemble is assumed gradually to approach the steady state, which is reached after
sufficiently long time (t → ∞). We shall treat this limit in Laplace space by calculating
all quantities in the limit s → 0. The expression for the drift velocity is obtained from
equations (3) and (4). First, we note that according to equations (3) and (9), the elements ωνµ

of the matrix, which characterize carrier generation and recombination, satisfy the sum rule∑
µ ωνµ(s) = 0. To elucidate the approach, we treat a two-band model, in which the structure

of this matrix is identified. From the sum rule, we get

ω̂ =
( −ω1 ω1

ω2 −ω2

)
, (13)
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which leads to det ω̂ = 0 and ω̂2 = (ω1 + ω2)ω̂. To solve the matrix equation (3), we consider
the inverse of the matrix σ̂ (s) = s1̂ − ω̂(s) in the limit s → 0:

σ̂−1(s)
s→0∼ 1

s

1

ω1 + ω2

(
ω2 ω1

ω2 ω1

)
− ω̂

(ω1 + ω2)2
= n̂

s
− ω̂

(ω1 + ω2)2
. (14)

The elements nνν′ of the (density) matrix n̂ introduced in equation (14) do not depend on the
first index, and satisfy the sum rule∑

ν′
nνν′ (s) = 1. (15)

Taking into account equation (4) in the limit s → 0, the effective drift velocity of the multiband
model is introduced by the equation

vd ≡
∑
µ,µ′

nνµ(s)vµµ′(s)|s→0 = −is2
∑
ν′

∑
k,k′

(1) Pνν′ (k, k′ |s)|s→0. (16)

The physical interpretation of this quantity is given in the appendix. Because the right-hand
side of equation (16) does not depend on the first index ν, an additional sum (1/Nb)

∑
ν(· · ·)

can be inserted, with Nb being the number of subbands. Let us now express the drift velocity
in equation (16) by the formal solution given in equation (10). A convenient physical picture
for the drift velocity is obtained by replacing the quantity (0) P in equation (10) by the carrier
distribution function

f µ′
µ (k|s) = s

∑
k′

∑
ν

(0) Pνµ′
νµ (k′, k|s), (17)

which according to equation (7) satisfies the kinetic equation{
s +

eE
h̄

· ∇k +
i

h̄
[εν′(k) − εν(k)]

}
f ν′
ν (k|s)

+
i

h̄
eE ·

∑
µ

[Qµν(k) f ν′
µ (k|s) − Qν′µ(k) f µ

ν (k|s)]

= sδνν′ +
∑

k1

∑
µ,µ′

f µ′
µ (k1|s)Wµ′ν′

µν (k1, k′|s). (18)

In the limit s → 0, the quantum Boltzmann equation is recovered, in which the scattering
probabilities Wµ′ν′

µν depend on the electric field. The final expression for the drift velocity of
the multi-subband system has the form

vd(s) = 1

Nb

∑
k

∑
ν,ν′

vν′
ν (k|s) f ν′

ν (k|s), (19)

which collects various intra- and interband contributions given by

vν′
ν (k|s) = vν(k)δνν′ − eE

h̄
· ∇k Qνν′ (k) − i

∑
k′

∑
µ

(1)W ν′µ
νµ (k, k′|s). (20)

The third term on the right-hand side of equation (20) vanishes when the scattering part of
the Hamiltonian Hint commutes with the dipole operator. This condition is satisfied when Hint

does not depend on the velocity operator. Based on an alternative microscopic approach, the
same set of equations was derived for the current density in [8].
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2.2. Diffusion coefficient

The diffusion coefficient is calculated in the similar way as the drift velocity in the
previous section. The definition of the effective longitudinal diffusion coefficient is based
on the treatment of the long-wavelength limit as presented in the appendix. From the
phenomenological consideration, we obtain

Dzz = − s2

2

∑
ν′

∑
k,k′

(2) Pνν′ (k, k′|s) − 1

s
v2

d(s)|s→0, (21)

which provides the basis for our microscopic description. In this equation for the effective
diffusion coefficient, the formal solution of equation (11) is inserted. Similar to the previous
section, a specific function is introduced:

ϕν′
ν (k|s) = −vd(s)

s
f ν′
ν (k|s) − is

∑
k

∑
µ

(1) Pµν′
µν (k, k′|s), (22)

which characterizes diffusion phenomena. From equations (11), (21), and (22), we obtain the
general result

Dzz(s) = 1

Nb

∑
k

∑
ν,ν′

vν′
ν (k|s)ϕν′

ν (k|s) − 1

2Nb

∑
k

∑
ν,ν′

f ν′
ν (k|s)

∑
k′µ

(2)W ν′µ
νµ (k, k′|s), (23)

in which the first term on the right-hand side has the same form as equation (16). According
to equations (7) and (22), the new functions ϕν′

ν satisfy the quantum kinetic equation{
s +

eE
h̄

· ∇k +
i

h̄
[εν′(k) − εν(k)]

}
ϕν′

ν (k|s)

+
i

h̄
eE ·

∑
µ

[Qµν(k)ϕν′
µ (k|s) − Qν′µ(k)ϕµ

ν (k|s)]

=
∑

k1

∑
µ,µ′

ϕµ′
µ (k1|s)Wµ′ν′

µν (k1, k′|s)

+
∑

k1

∑
µ,µ′

f µ′
µ (k1|s)vµ′ν′

µν (k1, k′|s) − vd(s)δνν′ . (24)

In contrast to equation (18), additional contributions appear on the right-hand side of
equation (24), which are introduced by the velocity matrix

vµ′ν′
µν (k, k′|s) = 1

2 [vµ(k) + vµ′(k)]δkk′δµ′ν′δµν

− δkk′
eE
h̄

· [δµ′ν′∇k Qµν(k) + δµν∇k Qν′µ′(k)] − i (1)Wµ′ν′
µν (k, k′|s), (25)

with ∑
kµ

vν′µ
νµ (k′, k|s) = vν′

ν (k′|s). (26)

The new functions ϕν′
ν (k) satisfy a completely different sum rule than the carrier distribution

functions f ν′
ν (k), which are normalized to unity. From equations (16) and (22), we get∑

k

∑
ν

ϕν
ν (k|s) = 0, (27)

which is in accordance with the result of the one-band model [4, 10].
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3. Application: two subbands

The general multi-band approach is now applied to a two-band system. We shall treat
semiconductor superlattices (SLs) subject to a dc electric field applied parallel to the SL
axis. As the SL period d turns out to be sufficiently large, high-field effects occur already
at moderate field strengths. Field-induced intersubband tunnelling is the most interesting
quantum effect in multi-subband SLs. These tunnelling transitions lead to an appreciable
carrier redistribution and to a resonance peak in the carrier density (Zener resonance). Similar
peculiarities due to tunnelling are expected to appear in quantum diffusion. According to
our general discussion, we should not be surprised to find peculiarities in quantum diffusion
under high-field conditions. It is not clear whether quantum diffusion and quantum transport
behave in the same way. To illustrate the main steps of our approach, let us first summarize
the calculation of the drift velocity.

3.1. Drift velocity

In this section, the semiclassical intrasubband and quantum-mechanical tunnelling contribution
to the drift velocity are calculated for an SL with two subbands. In order to introduce the
notation, we present the main steps of previous calculations [11] to keep the paper self-
contained. The drift velocity will be calculated for a two-band SL model with constant dipole
matrix elements and with an interaction part Hint of the Hamiltonian that commutes with the
dipole operator. Performing an integration by parts in equation (19), we obtain

vd = − 1

h̄Nb

∑
k

∑
ν

εν(kz)
∂

∂kz
f ν
ν (k) = v

(s)
d + v

(t)
d , (28)

in which εν(kz) is calculated from the kz-dependent term of the tight-binding dispersion relation

εν(kz) = εν(kz) − 1

Nb

∑
kzν

εν(kz). (29)

In equation (28), vd is expressed by a semiclassical scattering (v(s)
d ) and a quantum-mechanical

tunnelling (v(t)
d ) contribution. This decomposition relies on the kinetic equation (18) for the

nonequilibrium distribution function, which is used to eliminate the derivative ∂ f ν
ν (k)/∂kz .

For the two contributions to the drift velocity, we obtain

v
(s)
d = − 1

eE

1

Nb

∑
k,k′

∑
ν,ν′

∑
µ

εµ(kz) f ν′
ν (k′)W ν′µ

νµ (k′, k), (30)

v
(t)
d = i

h̄

1

Nb

∑
k

∑
ν,ν′

f ν′
ν (k)Qνν′ (k)[εν′ (kz) − εν(kz)]. (31)

The intrasubband character of v
(s)
d results from the dominance of the scattering components

W νµ
νµ with respect to the coupling constant. In contrast, the tunnelling contribution v

(t)
d is

calculated from the off-diagonal elements f ν′
ν (ν �= ν ′). This fact illustrates its intersubband

origin. We are interested in performing analytic calculations as far as possible, permitting us to
focus on main physical phenomena. Therefore, we restrict ourselves to applying the relatively
crude constant relaxation-time approximation, which inevitably lacks some of the features
of a more realistic description of real systems, as, for example, electro-phonon resonances.
The simple model has not been chosen to give an accurate representation of real systems.
Rather, it is our intent here to use a model simple enough for extensive analytical calculations
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to demonstrate qualitative features in the quantum transport. In the calculation of v
(s)
d , the

following scattering probabilities are taken into account (see [8]):

W 12
12 (k′, k) = δk′,k

τ12
, W 21

21 (k′, k) = δk′,k

τ21
,

W 22
11 (k′, k) = W 11

22 (k′, k) = −δk′,k

τ
.

(32)

The tight-binding dispersion relations of the two-band model are given by

ε1(k) = ε(k⊥) +
�1

2
(1 − cos(kzd)), (33)

ε2(k) = ε(k⊥) + εg + �1 +
�2

2
(1 + cos(kzd)), (34)

in which ε(k⊥) refers to the lateral carrier motion in the SL layers. The widths of the minibands
and the gap energy are denoted by �i (i = 1, 2) and εg, respectively. In our simple model,
intersubband tunnelling occurs at the transition energy

h̄ω21 = εg +
�1 + �2

2
+ eE(Q11 − Q22). (35)

We proceed by calculating the nonequilibrium distribution function from the kinetic
equation (18). Let us first focus on the equation for the off-diagonal element[

ieE∇k + �ε(kz) + h̄ω21 + i
h̄

τ

]
f 1
2 (k) = eEQ12( f 1

1 (k) − f 2
2 (k)), (36)

within an approximation applicable to high electric fields under the conditions �τeff > 1
(with � = eEd/h̄ being the Bloch frequency and τeff an effective scattering time). The kz

dependence introduced by �ε(kz) = [(�1 + �2)] cos(kzd) is treated in an exact manner by
using the transformation

f (k) = f 1
2 (k) exp

{
− i

eE

∫ kz

0
dk ′

z �ε(k ′
z)

}
(37)

and introducing the kz-Fourier coefficients of the distribution function

f ν′
ν (k) =

∞∑
l=−∞

eilkz d f ν′
ν (k⊥, l). (38)

Restricting the sum to the dominating lowest order l = 0 term of f ν
ν (k⊥, l), we obtain the

analytical result

f 1
2 (k⊥, l) = e

h̄
EQ12

∞∑
l′=−∞

(−1)l′ Jl′ (κ)Jl−l′ (κ)

l ′� − ω21 − i/τ
[ f 2

2 (k⊥, 0) − f 1
1 (k⊥, 0)], (39)

in which Jl denote the Bessel functions of order l and κ = (�1 + �2)/(2h̄�). The carrier
occupation numbers

Fν =
∑

k

f ν
ν (k) (40)

are obtained from the kinetic equation for the diagonal elements of the density matrix, which
is expressed by

ieE

h̄
Q12

∑
k⊥

[ f 1
2 (k⊥, 0) − f 2

1 (k⊥, 0)] = − 1

τ12
F1 +

1

τ21
F2. (41)
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Inserting equation (39) into (41) and considering the principle of detailed balance between
carrier generation and recombination [τ12 = τ21 exp(εg/kBT )], we obtain

F1 − F2 = sinh(εg/(2kBT ))

cosh(εg/(2kBT )) + 2�τ�τ21 A0 exp(εg/(2kBT ))
, (42)

with

An =
(

Q12

d

)2 ∞∑
l=−∞

ln Jl(κ)2

(l�τ − ω21τ )2 + 1
. (43)

The calculation of the intersubband tunnelling contribution v
(t)
d proceeds in a similar way by

starting from equation (31). The result

v
(t)
d = 2d

Nbτ
(F1 − F2)A1 (44)

describes tunnelling-induced resonant transport, whenever a multiple of the Bloch frequency
matches the renormalized energy gap (l� = ω21, with l being an integer).

The quasiclassical scattering-induced drift velocity v
(s)
d is assumed to behave regularly.

For simplicity, we choose the Esaki–Tsu expression for its description [11]:

v
(s)
d = 1

Nb

∑
ν=1,2

�νd

2h̄

�τν

(�τν)2 + 1

I1(�ν/(2kBT ))

I0(�ν/(2kBT ))
Fν . (45)

τν denote intrasubband scattering times and Il the modified Bessel functions. We focus on
high electric fields, when Zener tunnelling occurs. In this regime, it is sufficient to exploit
the asymptotic relationship between the smooth parts of the drift velocity and the diffusion
coefficient given by

D(s)
zz = v

(s)
d d

2
coth

(
h̄�

2kBT

)
, (46)

which is valid in the ultra-quantum limit (�τeff � 1) [4] and in the ohmic regime (h̄� �
2kBT ).

3.2. Diffusion coefficient

The diffusion coefficient is calculated in the same way as the drift velocity. For our scattering
model, the second term on the right-hand side of equation (23) disappears. Integrating by
parts, the remaining expression in this equation is written as

Dzz = − 1

h̄Nb

∑
k

∑
ν

εν(kz)
∂

∂kz
ϕν

ν (k) = D(s)
zz + D(t)

zz , (47)

which according to the kinetic equation (24) decomposes into a tunnelling and a scattering
mediated contribution

D(s)
zz = − 1

eE

1

Nb

∑
k,k′

∑
ν,ν′

∑
µ

εµ(kz)ϕ
ν′
ν (k′)W ν′µ

νµ (k′, k)

+
1

2(eE)2

1

Nb

∑
k,k′

∑
ν,ν′

∑
µ

εµ(kz)
2 f ν′

ν (k′)W ν′µ
νµ (k′, k), (48)

D(t)
zz = i

h̄

1

Nb

∑
k

∑
ν,ν′

ϕν′
ν (k)Qνν′ (k)[εν′ (kz) − εν(kz)]

− i

2h̄eE

1

Nb

∑
k

∑
ν,ν′

f ν′
ν (k)Qνν′ (k)[εν′ (kz)

2 − εν(kz)
2]. (49)



4450 P Kleinert and V V Bryksin

We shall focus on diffusion via tunnelling as described by equation (49). There are two
contributions, which are calculated from the off-diagonal elements of the functions f ν′

ν and
ϕν′

ν . The element ϕ1
2(k) is straightforwardly obtained by applying the same steps of calculation

as outlined in section 3.1. The result

ϕ1
2(k⊥, l) = e

h̄
E · Q12

∞∑
l′=−∞

(−1)l′ Jl′(κ)Jl−l′ (κ)

l ′� − ω21 − i/τ
[ϕ2

2(k⊥, 0) − ϕ1
1(k⊥, 0)]

− �1 − �2

8h̄
�Q12

∞∑
l′=−∞

Jl−l′ (κ)

l ′� − ω21 − i/τ
[ f 2

2 (k⊥, 0) − f 1
1 (k⊥, 0)]

×
[

(−1)l′−1 Jl′−1(κ)

(l ′ − 1)� − ω21 − i/τ
− (−1)l′+1 Jl′+1(κ)

(l ′ + 1)� − ω21 − i/τ

]
(50)

consists of two quite different contributions. The structure of the first term corresponds to
the same one as in equation (39), whereas the unwieldy second term on the right-hand side of
equation (50) fortunately disappears in equation (49). In the final result for the tunnelling part
of the diffusion coefficient

D(t)
zz = 1

Nb

d2

τ
(�τ)2

[
�1 − �2

�1 + �2
(F2 − F1)A2 + 2

P1 − P2

d
A1

]
, (51)

there remain two quite different contributions. One of them exhibits a Zener resonance and is
proportional to the field-induced change of occupation numbers. This term is always positive
because (i) there is no population inversion (F2 < F1) in a two-band system [11], and (ii) the
width �1 of the lowest subband is always smaller than the width �2 of the upper subband.
The second contribution in equation (51), which is calculated from the quantities

Pν =
∑

k

ϕν
ν (k), P1 + P2 = 0, (52)

behaves quite differently. Obviously, the carrier occupation numbers do not enter this
expression. To elucidate the nature of this tunnelling-induced diffusivity, let us calculate
the quantities Pν . Similarly to the previous section, we obtain from equation (24)

ieE

h̄
Q12

∑
k⊥

[ϕ1
2(k⊥, 0) − ϕ2

1(k⊥, 0)] = − 1

τ12
P1 +

1

τ21
P2 + vd1 − vd, (53)

which together with equation (50) is easily solved. From the solution

P1 − P2 = vd1 − vd2

2

τ21 exp(εg/(2kBT ))

cosh(εg/(2kBT )) + 2�τ�τ21 A0 exp(εg/(2kBT ))
, (54)

with

vdν
=

∑
k

vν(kz) f ν
ν (k), (55)

we can see that P1 − P2 is proportional to the difference of the subband velocities vd1 − vd2 .
This contribution physically describes field-induced diffusion, when the drift velocities of the
carrier subsystems deviate from each other. In contrast to the difference of occupation numbers
F1 − F2, which, for a two-band model, cannot change its sign as a function of the electric field,
the difference of velocities vd1 −vd2 may become positive or negative depending on the electric
field strength and the SL parameters. Negative values of vd1 − vd2 are expected to occur in
the vicinity of an intersubband tunnelling resonance characterized by F1 ≈ F2. In this case,
the tunnelling contribution to the diffusion coefficient leads to a Zener antiresonance. When
intersubband tunnelling becomes most effective (F1 = F2), the tunnelling contribution to the
drift velocity disappears (v(t)

d = 0), but there remains a contribution to quantum diffusion that
exhibits a tunnelling resonance or antiresonance, depending on whether the subband velocity
vd1 is larger or smaller than vd2 .
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Figure 1. The dimensionless drift velocity ṽz = vz/(2d/τ ) (thin solid curve) and longitudinal
diffusion coefficient D̃zz = Dzz/(d2/τ ) (thick solid curve) as a function of the electric field Ez .
The dashed curve shows the scattering-induced contributions ṽ

(s)
z and D̃(s)

zz , which according to
equation (46) coalesce. The positions of Zener resonances are indicated by vertical dotted lines.
The parameters used in the calculation are d = 20 nm, εg = 100 meV, �1 = 5 meV, �2 = 20 meV,
(Q12/d)2 = 0.1, τ1 = 0.1 ps, τ2 = 0.05 ps, τ21 = 2 ps, τ = 1 ps and T = 4 K.

3.3. Numerical results

In the numerical analysis of the electric-field-dependent diffusion coefficient, we concentrate
on the tunnelling contribution given by equation (51). For simplicity, the scattering-mediated
diffusivity is calculated from the asymptotic expression in equation (46) (valid in the ultra-
quantum limit (�τeff � 1) and in the ohmic regime (h̄� � 2kBT )) together with the Esaki–Tsu
result in equation (45). The dimensionless drift velocity vz/(2d/τ) and longitudinal diffusion
coefficient Dzz/(d2/τ) are shown in figures 1 and 2 as a function of the electric field strength for
different scattering parameters and temperatures. In both figures, the drift velocity (thin solid
curve) exhibits at low electric fields an ohmic behaviour, which, with increasing field strength,
is followed by a region of negative differential conductivity and the appearance of a strong Zener
resonance (marked by a dotted vertical line). The scattering-induced contribution v

(s)
d /(2d/τ)

(which coalesces with the dimensionless diffusion coefficient) is shown by the dashed line. In
addition to the main Zener resonance, a satellite structure is resolved. In the vicinity of the
intersubband tunnelling resonance, the field dependence of the diffusion coefficient deviates
remarkably from the behaviour of the drift velocity and exhibits a Zener antiresonance. This
antiresonance, which is due to the tunnelling contribution D(t)

zz to the diffusion coefficient,
occurs under the conditions F1 ≈ F2 and τ2 < τ1.

The experimental observation of this antiresonance requires the suppression of domain
formation in a suitably designed strongly coupled SL. Moreover, it is necessary to figure out
an appropriate experimental setup to identify the Zener antiresonance in quantum diffusion.
Whereas the physical meaning of the longitudinal diffusion coefficient Dzz becomes obvious in
the ohmic regime due to the Einstein relation, its understanding becomes more difficult for the
considered two-band model in the region of quantizing electric fields. Therefore, we believe
that the experimental verification of the predicted Zener antiresonance in quantum diffusion
is a challenge that deserves further investigation.
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Figure 2. ṽz (thin solid curve) and D̃zz (thick solid curve) versus Ez for T = 77 K and the following
set of scattering parameters: τ1 = 0.05 ps, τ2 = 0.01 ps, τ21 = 1 ps, and τ = 0.5 ps. The dashed
curve shows the scattering-induced contributions ṽ

(s)
z and D̃(s)

zz .

4. Summary

We have developed a microscopic quantum theory for the carrier diffusion in multi-band
semiconductors and semiconductor SLs, at which an electric field of arbitrary strength is
applied. It was demonstrated that diffusion in biased semiconductors is governed by a quantity
ϕν′

ν (k) that refers to an initial inhomogeneity of the carrier system and that differs from the
nonequilibrium distribution function f ν′

ν (k), from which the drift velocity is calculated. For
this new quantity, a kinetic equation was derived, which replaces the Boltzmann equation (or
its quantum-mechanical extension). This general theory of quantum diffusion within the one-
particle picture is completely exact. Results were obtained for an SL with two subbands.
We focused on the electric-field regime, in which intersubband tunnelling is expected to
occur. It was shown that both the drift velocity and the longitudinal diffusion coefficient
decompose into a scattering- and tunnelling-induced contribution. Depending on the SL
parameters (such as, for example, the barrier width, the scattering times, and the miniband
widths), the longitudinal diffusion coefficient exhibits a Zener resonance or antiresonance.
This result has to be contrasted with the drift velocity, in which always a Zener resonance, but
never an antiresonance, occurs. This discrepancy underlines the fact that both quantities have
a different physical origin and, therefore, may behave quite differently at high electric-field
strengths. We conclude that the Einstein relation between the drift velocity and the diffusion
coefficient is not valid at high electric fields. This observation is in line with results derived by
applying the Chapman–Enskog approximation to the Boltzmann–Poisson equations [14, 15].
In this paper, we have identified peculiarities in quantum diffusion at the Zener tunnelling
resonance, which cannot be described by the Einstein relation.

Our numerical results were derived in the simple relaxation-time approximation, which
was used to demonstrate qualitative features of intersubband tunnelling, but was not chosen
to give an accurate representation of real systems. Further progress is related to studying
realistic models for elastic and inelastic scattering. Several applications of our theory are
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conceivable. Taking into account the electric-field dependence of scattering, it is expected
that combined Zener-phonon resonances [12] can be observed in quantum diffusion. Another
application of our general approach could be the treatment of quantum diffusion associated
with the real-space transfer of carriers [13] during the parallel transport in SLs.
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Appendix. Phenomenological consideration

In this appendix, we present a phenomenological analysis of the long-wavelength behaviour of
the Fourier transformed propagator Pνν′ (q, s). We restrict the discussion to a two-band model
and solve the set of linear equations

s Pνν′ = δνν′ + iq
∑
µ

Pνµvµν′ − q2
∑

µ

Pνµ Dµν′ +
∑

µ

Pνµωµν′ , (A.1)

which are obtained by Fourier transforming equation (1). The analytic solution is treated in
the limit s → 0 and q → 0. Taking into account equation (13), we obtain the following
propagator for an effective drift-diffusion equation:

Pνν′ (q, s) = nν′

s − iqveff + q2 Deff
, (A.2)

with the drift velocity

veff =
∑
µµ′

nµvµµ′ ≡ vd, (A.3)

and the diffusion coefficient

Deff = Dd +
1

ω1 + ω2

[
vd(v11 + v22) + v12v21 − v11v22 − v2

d

]
(A.4)

of the two-band model. In equation (A.2), we used the abbreviations

Dd =
∑
µµ′

nµ Dµµ′, (A.5)

n1 = ω2

ω1 + ω2
, n2 = ω1

ω1 + ω2
. (A.6)

In contrast to veff , the effective diffusion coefficient Deff is not equal to Dd. There is an
additional contribution to the diffusion coefficient, which exists also under the condition
Dνν′ = 0. The physical origin of this additional term is elucidated by the equivalent form

Deff = Dd +
v+−

ω1 + ω2
[v−+ − v+−(n1 − n2)

2 + (v++ − v−−)(n2 − n1)], (A.7)

with

v++ = 1
2 (v11 + v12 + v21 + v22), v+− = 1

2 (v11 − v12 + v21 − v22),

v−+ = 1
2 (v11 − v12 − v21 + v22), v−− = 1

2 (v11 + v12 − v21 − v22).

The second term on the right-hand side of equation (A.7) is proportional to v+−. This term
leads to a spreading of an initial charge carrier inhomogeneity even when Dd = 0. Under the
condition v12 = v21 = 0 and v11 �= v22, the carriers in the two subbands move with different
velocities so that an initial δ-like package is smeared out after a given time t between the space
coordinates v11t and v22t . We conclude that there is a contribution to the effective diffusion
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coefficient, which is proportional to |v11 − v22|. This observation enables us to understand
the physical origin of the Zener antiresonance. At the intersubband tunnelling transition,
there is strong mixing of states so that the subbands lose their single character. Consequently,
only a common occupation number and a common drift velocity appear so that the additional
contribution in equation (A.7) disappears, giving rise to a minimum of the diffusion coefficient
(Deff ≈ Dd) at the tunnelling resonance.

From equation (A.2) it is easily seen how the effective drift velocity and the effective
diffusion coefficient are expressed by the moments of the propagator Pνν′ (q, s). We obtain

veff = −is2
∑
ν′

(1) Pνν′ (s)|s→0, (A.8)

Deff = − s2

2

∑
ν′

(2) Pνν′ (s) − v2
d(s)

s

∣∣∣∣
s→0

, (A.9)

which was used in equations (16) and (21) to define the drift velocity and the diffusion
coefficient, respectively.
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